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ABSTRACT 
One of the skills that comprise computational thinking is the 
ability to read code and reason about the hierarchical relationships 
between different blocks, expressions, elements, or other types of 
nodes, depending on the language. In this study, we present three 
new instruments for assessing different aspects of reading 
hierarchies in code, including vocabulary, reasoning, and fluency. 
One of these instruments is Nester, an interactive tool we have 
designed to elicit mental models about the hierarchical structure 
of code in computing languages ranging from HTML, CSS, and 
LaTeX to JavaScript and Lisp. We describe a lab study in which 
we administered these instruments to 24 participants with varying 
degrees of web development experience. We report findings from 
this study, including participants’ ability to define, reason about, 
and manipulate hierarchies in code, and the errors and 
misconceptions that relate to them. Finally, we discuss avenues 
for future work. 
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1. INTRODUCTION 
Computation is increasingly recognized as a fundamental literacy 
alongside reading, writing, and arithmetic [2]. The term 
computational thinking was coined by Wing to describe “solving 
problems, designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer 
science” [30]. In their work with Scratch, Brennan and Resnick 
expand on this notion by proposing a framework of concepts (e.g., 
iteration, parallelism), practices (e.g., debugging, remixing), and 
perspectives (e.g., expressing, connecting) [1]. As their 
framework demonstrates, computational thinking can be thought 
of as a rich, multi-layered set of knowledge and skills. 

Web development is one domain that reflects this rich and multi-
layered quality, given the broad set of technologies and practices 
that it calls upon, as well as its role as the first major exposure to 
creative computation for many people [3, 22]. Multiple facets of 
web development have been examined through the lens of 
computational thinking. For example, Miller et al. [14] analyze 
the errors students make when using a tree representation of a 
filesystem to construct relative and absolute paths. Dorn and 
Guzdial [4] characterize the knowledge gained by web developers 
about fundamental programming concepts like assignment, scope, 
and recursion through their experience with languages like 
JavaScript and PHP, finding that participants often recognize but 
do not fully understand these concepts. 

Previously we proposed that basic markup and style-sheet 
languages like HTML and CSS can also engage aspects of 
computational thinking, like notation, nesting, and 
parameters [15]. Our subsequent work has explored the common 
errors web developers make when writing HTML and CSS [17], 
identifying the deep nesting of code as a particularly troublesome 
area for beginners [16]. 

In this paper, we build on that work by focusing our attention on 
the knowledge and skills associated with reading deeply nested 
hierarchies in code. Navigating hierarchies in code involves 
multiple perceptual, cognitive, and motor processes, from parsing 
long strings of text by identifying delimiters and other features of 
the code, forming mental models that reflect the code’s 
hierarchical structure, reasoning about relationships between 
different sections of the code based on this model, and editing the 
code to reflect a newly desired state. 

Like many concepts found within computational thinking, 
hierarchies provide a way of managing complexity. By being able 
to move adroitly between different levels of nesting, one can view 
the same code at different levels of abstraction, focusing attention 
on a particular level or chunk of code while understanding its 
function in relation to the rest of the program. Moreover, this is a 
basic concept that can be applied to a wide range of computing 
languages. However, these abilities presumably must be learned 
over time and developed through practice. 

To explore knowledge and skills related to navigating hierarchies 
in code, we pose the following research questions: 

1. How familiar are web developers with the vocabulary of 
hierarchies? 

2. How well do web developers apply rules and reason about 
navigating hierarchies? 

3. How can we measure skills associated with fluently 
navigating hierarchies, and how do they transfer from 
familiar to unfamiliar computing languages? 
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2. RELATED WORK 
The program comprehension literature describes several models 
of how programmers construct an understanding of code [23]. In 
early work, two fundamental approaches were proposed. The top-
down model suggested that programmers start with the problem 
domain and program goals, relating them to elements of the 
code [25]. In the bottom-up model, programmers begin with 
elements of the code and map them to the program goals [19]. 
Since then, other models depict a more nuanced picture where 
programmers switch opportunistically between these 
approaches [11], depending on their present state of knowledge 
about the program and the programming task at hand [13]. 

During program comprehension, code can be read along multiple 
dimensions, with different features of the program becoming more 
relevant and providing alternate forms of information [7]. These 
dimensions facilitate different strategies that professional 
programmers use to understand code, like tracing the data flow 
and the control flow [10, 21]. Another dimension is spatial, 
referring to the code’s order in the source, in contrast to its 
execution order [8]. In the present study, we consider a structural 
view in which programmers examine the hierarchical structure 
that is created by the nesting of code blocks in a program. This 
structural view is tied to both the logic underpinning the code’s 
organization, as well as its spatial arrangement when formatted 
with indentation. 

In expert program comprehension, researchers have found 
evidence for a reliance on beacons, which Wiedenbeck defines as 
“lines of code which serve as typical indicators of a particular 
structure or operation” [29]. Green has likewise found support for 
the indentation of nested code enabled by structured programming 
for acting as “redundant perceptual encoding… [that] provides a 
secondary clue to their logical structure” in improving program 
comprehension [6]. These empirical findings suggest that just as 
individual lines can serve as landmarks, reading hierarchies can 
help reveal the more general terrain of code during program 
comprehension. 

Finally, several studies point to the design and practices of a 
language, such as its nesting syntax and use of whitespace, as 
having an effect on program comprehension. Like paired tags 
used in HTML and XML, the redundant labelling of “begin” and 
“end” statements used to mark a nested block of code in ALGOL 
was found to aid program comprehension among novices [24]. 
Stefik and Seibert conducted several studies that found the syntax 
of different program languages like Python, Ruby, and Java to 
have a significant effect on their understandability and ease of 
use [27]. If significant differences exist among imperative 
programming languages, then for drastically different languages 
like LaTeX, CSS, and Lisp, there is the question of the degree to 
which such differences exist, and how the basic skill of reading 
hierarchies in code may transfer across languages. 

Despite distinct differences from reading code, the extensive 
research on reading comprehension as it relates to prose is also 
instructive [19]. Reading fluency—decoding and comprehending 
text accurately and with the appropriate rate and prosody—calls 
on a cascade of sub-processes and knowledge such as letter sound 
fluency and vocabulary [9]. Studies have found that lower-level 
skills like word decoding are a critical factor in reading ability [5]. 
We similarly consider reading hierarchies in code as a basic 
computational skill that can support higher-level programming 
activities. 

3. METHODS 
To address our research questions, we developed three 
instruments for measuring knowledge and skills about hierarchies 
in code. We then conducted a lab study in which we invited 
participants into the lab and had them complete tasks based on 
these instruments. We triangulate the data collected from these 
instruments for our analysis. 

3.1 Data Collection 
For our study, we sought participants who had prior experience in 
web development, ranging from beginner to expert. We posted 
on-campus flyers and announcements on mailing lists, and offered 
$25 for participation in the approximately hour-long session. 

The participants were invited into a lab, where we provided them 
with a computer to be used for the study. After giving informed 
consent, participants were directed to complete a computer-based 
pre-questionnaire that collected information about their area of 
study and self-reported expertise with a variety of computing 
languages. Following this, they completed tasks based on the 
three instruments described in the next section. The study 
concluded with a post-questionnaire that asked participants to rate 
their perceived difficulty with the tasks, and provide demographic 
information such as age and gender. We delayed collection of 
demographic information until after the tasks in order to minimize 
the effect of stereotype threat [26]. 

24 participants volunteered to participate, 11 females and 13 
males. All participants were either undergraduate or graduate 
students, with an average age of 22 years. Their areas of study 
emphasized design or technology, including majors in digital 
media, software engineering, computer science, and information 
systems. The sole exception was a chemical engineering student. 

None of the participants practiced web development 
professionally, but all had some level of prior experience. Among 
the computing languages surveyed, participants were most 
familiar with HTML, followed by CSS and JavaScript. All 24 
participants reported experience with HTML, with a mean of 2.1 
on a scale 0 (no experience) to 4 (expert), 22 participants with 
CSS (µ = 1.7), and 19 with JavaScript (µ = 1.3). 

3.2 Instruments 
In this section, we present three instruments we have developed to 
assess knowledge and skills related to the concept of hierarchies 
in code. These include hierarchical vocabulary, hierarchical 
reasoning, and hierarchical fluency.  

3.2.1 Hierarchical Vocabulary 
The first instrument assesses basic understanding of vocabulary 
associated with hierarchies. Seven terms are presented: 

• Parent 
• Child 
• Ancestor 
• Descendant  
• Sibling 
• Root 
• Leaf 

For each term, participants are first asked to rate whether they 
know the definition in the context of hierarchies, recognize the 
term but do not know the definition, or are not familiar with the 
term. Next, they are prompted to define each of the terms in their 
own words. 
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3.2.2 Hierarchical Reasoning 
In the second instrument, participants are presented with a code 
sample (Figure 1) and 14 items asking them to identify various 
nodes based on combinations of the aforementioned terms. For 
example, one item asks participants to identify the parent of the 
node present in line 2. This type of reasoning is frequently 
employed in activities like debugging HTML code, or navigating 
and selecting DOM nodes using CSS or JavaScript. The 
instrument provides definitions for the terms in case participants 
are not already familiar with them, and asks them to identify 
nodes by providing their element names and line numbers (e.g., 
html in line 1). 

The complete list of items is presented in Table 1. The first seven 
items apply the hierarchical terms individually, while the rest 
relate to more complex scenarios involving what we predict to be 
common misconceptions or pitfalls when reasoning about 
hierarchies. For example, item 10 assesses whether participants 
recognize nested nodes when formatted inline; Item 11 assesses 
whether participants mistake “cousins” for “siblings” when the 
cousins have no siblings of their own. The code sample is 
designed to support all of these items. 

This instrument takes an approach that is similar to code tracing 
problems [12] in that participants must reason about a static 
representation of code. However, rather than predicting the 
program execution and output, they must determine hierarchical 
relationships between different parts of code. 

 

Figure 1. The HTML code sample used in the hierarchical 
reasoning instrument. 

Table 1. Items used in the hierarchical reasoning instrument. 

Item Principle Instructions 
1 Parent List the parent of <head> (line 2) 
2 Child List all children of <header> (line 6) 
3 Ancestor List all ancestors of <h1> (line 7) 
4 Descendant List all descendants of <table> (line 12) 
5 Sibling List all siblings of <h1> (line 7) 
6 Root List the root element 

7 Leaf List all leaf elements contained in <table> 
(line 12) 

8 Proximity List the parent element of <button> (line 
43) 

9 Depth List all leaf elements contained in <ul> 
(line 21) 

10 Inline  List the parent element of <em> (line 49) 
11 Cousins List all sibling elements of <td> (line 17) 

12 Filter List all <input> elements that are 
descendants of any <div> 

13 Compound  List all descendants of <body> (line 5) that 
are also ancestors of <td> (line 17) 

14 Common 
Ancestor 

List the closest ancestor that <input> (line 
38) and <input> (line 41) share in common 

 

3.2.3 Hierarchical Fluency 
The third instrument assesses hierarchical rules as applied within 
an interactive coding environment. We developed a tool called 
Nester (Figure 2) that presents participants with unformatted 
snippets of code in various computing languages, with each line 
of code represented as a movable block. Participants are asked to 
indent the lines of code to reflect the nesting rules of the language, 
whether or not whitespace is significant in the given language. 
The purpose of Nester is to elicit observable representations of 
mental models that participants hold about the code. 

 

Figure 2. Nester, the interactive tool developed as the 
hierarchical fluency instrument, loaded with the HTML task. 
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In our previous work with HTML and CSS [17], we applied the 
skills-rules-knowledge framework [20] to differentiate rule-based 
errors that are rooted in misconceptions from skill-based errors 
that arise even when no misconceptions are held. While the 
previous two instruments are aimed at uncovering misconceptions 
or knowledge gaps, this instrument is designed to present more 
complex and interactive tasks that place a greater load on 
participants’ working memory [28]. In short, it is designed to 
expose the fluency with which participants handle hierarchies in 
code. 

Compared to a traditional code editor, Nester constrains the 
possible operations on code. Only the indentation of individual 
lines of code, not their contents, can be edited. Some 
programming environments offer auto-indent features that would 
render Nester’s tasks trivial. However, although Nester does not 
provide an authentic experience that programmers would 
encounter in practice, like Parson’s programming puzzles [18] 
they can be used to target assessment at a specific aspect of code 
comprehension. 

The common operations for selecting, indenting, and unindenting 
lines of code are supported via key combinations and the 
graphical user interface. For example, the up and down arrow 
keys can be used to select different lines, and a selected line can 
be indented by using the tab or right arrow keys. Lines can also be 
selected by mouse by clicking specific blocks, and indent and 
unindent buttons are displayed prominently at the top of Nester. 
Multiple lines can also be added to a selection by holding down 
the shift or control modifier keys while selecting a new line, or by 
dragging a box with the mouse cursor (i.e., lassoing) around 
multiple blocks. Before the tasks, participants were given a 
freeform orientation task to familiarize themselves with the 
operations of Nester. 

Nester is designed to support any number of languages and code 
samples, but for this study, we used Nester to present a single 
code sample for each of seven languages: HTML, XML, JSON, 
LaTeX, SCSS, JavaScript, and Lisp. These languages were 
selected to represent a broad range of syntaxes for delimiting 
nested blocks of code. For example, HTML, XML, and LaTeX as 
markup languages rely on start and end tags, JSON, JavaScript, 
and SCSS (an extension of CSS) on braces, and Lisp on 
parentheses. Additionally, we expected the languages to vary in 
terms of their familiarity among participants. This was confirmed 
in the pre-questionnaire where all 24 participants had prior 
exposure to HTML, but only 4 had exposure to Lisp. 

The code samples used in the study were comprised of a root node 
and three sub-trees, each of which was designed to be isomorphic 
across languages in terms of their nested structure. This was to 
control for variables like lines of code and complexity in the code 
samples. For example, if an element in the HTML sample had two 
child elements, then the equivalent node in JavaScript had two 
statements in a nested block of code. The order of the sub-trees 
within a code sample was randomized for each task, and the order 
of the languages was randomized for each participant. 

At the start of each task, instructions and an example are 
presented within Nester for how code should be formatted in case 
the participant was not familiar with the language. The 
instructions can also be invoked later on by clicking a button in 
the toolbar. After formatting the code, the participant was directed 
to click the Submit button, where Nester reports whether the task 
was solved correctly. If errors were present in the code, the 
opportunity is given to fix the errors and resubmit. 

3.3 Data Analysis 
For the hierarchical vocabulary instrument, self-reported 
familiarity with each term was converted to 0 (not familiar), 1 
(recognize but do not know the definition), or 2 (can define). The 
definitions that participants provided were also graded as 0 
(incorrect), 1 (partially correct), or 2 (correct). Summing these 
values resulted in a scale from 0 to 14 for each of the two parts. 

For the hierarchical reasoning instrument, responses were rated 
similarly: 0 (incorrect), 1 (partially correct), and 2 (correct). This 
resulted in a scale from 0 to 28. Mistakes were examined 
qualitatively in further detail. 

For the hierarchical fluency instrument, data logged by Nester for 
analysis included the total time spent on each task, the number of 
attempts per task, as well as the number and locations of errors 
per attempt. 

4. FINDINGS 
4.1.1 Hierarchical Vocabulary 
In the hierarchical vocabulary instrument, participants’ self-rated 
familiarity with the terms ranged the full scale from 0 to 14., with 
a mean of 10.7 (σ = 3.8). Five of the 24 participants had a score of 
7 or less, indicating a low level of familiarity, with one participant 
reporting no familiarity at all. A breakdown of the items is 
provided in Figure 3, revealing that “leaf”, “descendant”, 
“ancestor”, and “root” were the least familiar. 

 
Figure 3. Count of participants’ familiarity with terms. 

 

 
Figure 4. Count of participants’ correctness of definitions. 
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In defining the terms in the participants’ own words, scores again 
ranged from 0 to 14, with a mean of 8.7 (σ = 4.1). Seven 
participants had a score of 7 or less, with two participants not 
attempting any definitions. Correctness of each term’s definition 
(Figure 4) was largely in line with the respective self-rating, with 
a correlation of r = 0.81, p < 0.001, though participants tended to 
overestimate their knowledge slightly. 

Beyond the implicit metaphor of trees, a number of participants 
made references to families, object-oriented programming, and 
file systems in their definitions. Several had fuzzy notions of 
“leaf”, confusing the term with nodes in general. Another 
common misconception was that “ancestors” excluded “parent” 
and “descendants” excluded “child” nodes. 

4.1.2 Hierarchical Reasoning 
For the hierarchical reasoning instrument, scores ranged from 2 to 
28, with a mean of 23.1 (σ = 5.9). Performance on the term-
centered items in the first half of the reasoning instrument (Table 
1) was only moderately correlated with the equivalent items on 
the vocabulary instrument: r = 0.72, p < 0.001. However, this 
performance tended to be higher, suggesting participants were 
more comfortable applying the terms concretely in the context of 
code than they were expressing more abstract definitions. 

 

Figure 5. Count of participants’ correctness in 
hierarchical reasoning instrument. 

 

The second half of the instrument revolved around potential 
pitfalls or misconceptions, and participants did perform more 
poorly on several items including “depth”, “cousins”, and 
“inline”. For “depth”, a common error was to overlook more 
shallow leaf nodes when identifying leaf nodes deep within a 
hierarchy. For “cousins”, a cousin node was mistaken for a sibling 
on several occasions. For “inline”, three elements were nested 
within one another on a single line of code; the correct element, 
which was located in the middle of the line, was overlooked in 
favor of the element that was located most prominently at the start 
of the line. 

4.1.3 Hierarchical Fluency 
Hierarchical fluency was measured through seven tasks in Nester. 
Participants varied considerably in time on task, ranging from 6.2 
to 64.3 minutes (µ = 16.7, σ = 11.9). The cumulative attempts and 
errors averaged 12.8 (σ = 4.5) and 4.0 (σ = 10.6) respectively. 
Strong correlations were found between performance on the 
reasoning instrument and time (r = -0.84, p < 0.001) and attempts 
(r = -0.70, p < 0.001), but not errors (r = -0.45, p < 0.01). 

The two programming languages Lisp and JavaScript had the 
greatest variability for time on task, with Lisp taking longest 
(Figure 6). Attempts (Figure 7) and errors (Figure 8) were highly 
skewed, with many tasks requiring just one attempt. No 
correlation was found between the participants’ reported expertise 
with each language and performance on the corresponding task. 

 
Figure 6. Time on each task. 

 
Figure 7. Number of attempts on each task. 

 
Figure 8. Cumulative number of errors on each task. 
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5. DISCUSSION 
Overall, participants were generally found to be familiar with the 
vocabulary of hierarchies. However, they were more proficient in 
reasoning about these terms within the context of code than 
articulating formal definitions of them. 

Contrary to expectations, familiarity with a language did not relate 
to better performance in the hierarchical fluency instrument. 
Learning effects with respect to Nester and the tasks themselves 
may be a factor here. In our analysis, we discovered steep changes 
in performance during the first three tasks that were administered, 
independent of language given that task order was randomized, 
before stabilizing for the rest of the tasks. To address this, a 
lengthier training session as well as greater quantity and variety in 
the code samples may be required. 
Based on our experiences, we identified several opportunities to 
refine our instruments. For the vocabulary instrument, we plan to 
add a prompt for defining the concept of “hierarchy” itself. For 
the reasoning instrument, identifying nodes by element name and 
line number was cumbersome; an interactive format that allows 
nodes to be selected directly would improve usability. Finally, 
iterations on Nester could add features like syntax highlighting, 
providing a more familiar and authentic experience. 

In future work, we plan to administer these in the context of 
introductory computing courses, gaining insight into the impact 
these courses have on student ability to read hierarchies in code. 
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